The lithium iron phosphate (LiFePO
4) battery, also called LFP battery (with "LFP" standing for "lithium ferrophosphate"), is a type of rechargeable battery, specifically a lithium-ion battery, which uses LiFePO
4 as a cathode material, and a graphitic carbon electrode with a metallic current collector grid as the anode. The specific capacity of LiFePO
4 is higher than that of the related lithium cobalt oxide (LiCoO
2) chemistry, but its energy density is slightly lower due to its low operating voltage. The main problem of LiFePO
4 is its low electrical conductivity. Therefore, all the LiFePO
4 cathodes under consideration are actually LiFePO
4/C. Because of low-cost, low-toxicity, well-defined performance, long-term stability, etc. LiFePO
4 is finding a number of roles in vehicle use and backup power.
Video Lithium iron phosphate battery
History
LiFePO
4 is a natural mineral of the olivine family (triphylite). Its use as a battery electrode which was first described in published literature by John B. Goodenough's research group at the University of Texas in 1996, as a cathode material for rechargeable lithium batteries. Because of its low cost, non-toxicity, the natural abundance of iron, its excellent thermal stability, safety characteristics, electrochemical performance, and specific capacity (170 mA·h/g, or 610 C/g) it gained some market acceptance.
The chief barrier to commercialization was its intrinsically low electrical conductivity. This problem was overcome by reducing the particle size, coating the LiFePO
4 particles with conductive materials such as carbon, or both. This approach was developed by Michel Armand and his coworkers. Another approach by Yet Ming Chiang's group consisted of doping LFP with cations of materials such as aluminium, niobium, and zirconium. Products are now in mass production and are used in industrial products by major corporations including Black and Decker's DeWalt brand, the Fisker Karma, Daimler AG, Cessna and BAE Systems.
MIT introduced a new coating that allows the ions to move more easily within the battery. The "Beltway Battery" utilizes a bypass system that allows the lithium ions to enter and leave the electrodes at a speed great enough to fully charge a battery in under a minute. The scientists discovered that by coating lithium iron phosphate particles in a glassy material called lithium pyrophosphate, ions bypass the channels and move faster than in other batteries. Rechargeable batteries store and discharge energy as charged atoms (ions) are moved between two electrodes, the anode and the cathode. Their charge and discharge rate are restricted by the speed with which these ions move. Such technology could reduce the weight and size of the batteries. A small prototype battery cell has been developed that can fully charge in 10 to 20 seconds, compared with six minutes for standard battery cells.
Negative electrodes (anode, on discharge) made of petroleum coke were used in early lithium-ion batteries; later types used natural or synthetic graphite.
Maps Lithium iron phosphate battery
Advantages and disadvantages
The LiFePO
4 battery uses a lithium-ion-derived chemistry and shares many advantages and disadvantages with other lithium-ion battery chemistries. However, there are significant differences.
LFP chemistry offers a longer cycle life than other lithium-ion approaches.
Like nickel-based rechargeable batteries (and unlike other lithium ion batteries), LiFePO
4 batteries have a very constant discharge voltage. Voltage stays close to 3.2 V during discharge until the cell is exhausted. This allows the cell to deliver virtually full power until it is discharged, and it can greatly simplify or even eliminate the need for voltage regulation circuitry.
Because of the nominal 3.2 V output, four cells can be placed in series for a nominal voltage of 12.8 V. This comes close to the nominal voltage of six-cell lead-acid batteries. And, along with the good safety characteristics of LFP batteries, this makes LFP a good potential replacement for lead-acid batteries in many applications such as automotive and solar applications, provided the charging systems are adapted not to damage the LFP cells through excessive charging voltages (beyond 3.6 volts DC per cell while under charge), temperature-based voltage compensation, equalisation attempts or continuous trickle charging. The LFP cells must be at least balanced initially before the pack is assembled and a protection system also needs to be implemented to ensure no cell can be discharged below a voltage of 2.5 V or severe damage will occur in most instances.
The use of phosphates avoids cobalt's cost and environmental concerns, particularly concerns about cobalt entering the environment through improper disposal, as well as the potential for the thermal runaway characteristic of cobalt-content rechargeable lithium cells manifesting itself.
LiFePO
4 has higher current or peak-power ratings than LiCoO
2.
The energy density (energy/volume) of a new LFP battery is some 14% lower than that of a new LiCoO
2 battery. Also, many brands of LFPs, as well as cells within a given brand of LFP batteries, have a lower discharge rate than lead-acid or LiCoO
2. Since discharge rate is a percentage of battery capacity a higher rate can be achieved by using a larger battery (more ampere hours) if low-current batteries must be used. Better yet, a high current LFP cell (which will have a higher discharge rate than a lead acid or LiCoO
2 battery of the same capacity) can be used.
LiFePO
4 cells experience a slower rate of capacity loss (aka greater calendar-life) than lithium-ion battery chemistries such as LiCoO
2 cobalt or LiMn
2O
4 manganese spinel lithium-ion polymer batteries (LiPo battery) or lithium-ion batteries. After one year on the shelf, a LiFePO
4 cell typically has approximately the same energy density as a LiCoO
2 Li-ion cell, because of LFP's slower decline of energy density.
Safety
One important advantage over other lithium-ion chemistries is thermal and chemical stability, which improves battery safety. LiFePO
4 is an intrinsically safer cathode material than LiCoO
2 and manganese spinel, though omission of the cobalt, with its negative resistance versus increasing-heat property potentially encouraging thermal runaway. The Fe-P-O bond is stronger than the Co-O bond, so that when abused, (short-circuited, overheated, etc.) the oxygen atoms are much harder to remove. This stabilization of the redox energies also helps fast ion migration.
As lithium migrates out of the cathode in a LiCoO
2 cell, the CoO
2 undergoes non-linear expansion that affects the structural integrity of the cell. The fully lithiated and unlithiated states of LiFePO
4 are structurally similar which means that LiFePO
4 cells are more structurally stable than LiCoO
2 cells.
No lithium remains in the cathode of a fully charged LiFePO
4 cell--in a LiCoO
2 cell, approximately 50% remains in the cathode. LiFePO
4 is highly resilient during oxygen loss, which typically results in an exothermic reaction in other lithium cells.
As a result, lithium iron phosphate cells are much harder to ignite in the event of mishandling (especially during charge) although any fully charged battery can only dissipate overcharge energy as heat. Therefore, failure of the battery through misuse is still possible. It is commonly accepted that LiFePO
4 battery does not decompose at high temperatures. The difference between LFP and the LiPo battery cells commonly used in the aeromodelling hobby is particularly notable.
Specifications
- Cell voltage
- Minimum discharge voltage = 2.5 V
- Working voltage = 3.0 ~ 3.3 V
- Maximum charge voltage = 3.65 V
- Volumetric energy density = 220 Wh/dm3 (790 kJ/dm3)
- Gravimetric energy density > 90 Wh/kg (> 320 J/g)
- 100% DOD cycle life (number of cycles to 80% of original capacity) = 2,000-7,000
- 10% DOD cycle life (number of cycles to 80% of original capacity) > 10,000
- Sony Fortelion: 74% capacity after 8,000 cycles with 100% DOD
- Cathode composition (weight)
- 90% C-LiFePO4, grade Phos-Dev-12
- 5% carbon EBN-10-10 (superior graphite)
- 5% polyvinylidene fluoride (PVDF)
- Cell configuration
- Carbon-coated aluminium current collector 15
- 1.54 cm2 cathode
- Electrolyte: ethylene carbonate-dimethyl carbonate (EC-DMC) 1-1 lithium perchlorate (LiClO
4) 1M - Anode: graphite or hard carbon with intercalated metallic lithium
- Experimental conditions:
- Room temperature
- Voltage limits: 2.0-3.65 V
- Charge: Up to C/1 rate up to 3.6 V, then constant voltage at 3.6 V until I < C/24
- According to the manufacturer BYD the lithium iron phosphate battery of the electric car e6 is charged at a fast charging station to 80% within 15 minutes, and 100% within 40 minutes .
Usage
Transportation
Higher discharge rates needed for acceleration, lower weight and longer life makes this battery type ideal for bicycles and electric cars.
Solar garden and security light systems
Single "14500" (AA battery-sized) LFP cells are now used in some solar-powered path lights instead of 1.2 V NiCd/NiMH.
LFP's higher (3.2 V) working voltage can allow a single cell to drive an LED without needing a step-up circuit. The increased tolerance to modest overcharging (compared to other Li cell types) means that LiFePO
4 could be connected to photovoltaic cells without complex circuitry. A single LFP cell also alleviates corrosion, condensation and dirt issues associated with battery holder and cell-to-cell contacts - such poor connections often especially plague outdoor systems using multiple removable NiMH cells.
More sophisticated LFP solar charged passive infrared security lamps are also emerging (2013).[1] As AA-sized LFP cells have a capacity of only 600 mA?h (while the lamp's bright LED may draw 60 mA) only 10 hours' run time may be expected. However - if triggering is only occasional - such systems may cope even under low-sunlight charging conditions, as lamp electronics ensure after dark "idle" currents of under 1 mA.
LiFePO
4-powered solar lamps are visibly brighter than ubiquitous outdoor solar lights, and performance overall is considered more reliable.
Other uses
Many home EV conversions use the large format versions as the car's traction pack. With the efficient power-to-weight ratios, high safety features and the chemistry's refusal to go into thermal runaway, there are few barriers for use by amateur home "makers".
Some electronic cigarettes use these types of batteries.
Three torch/flashlight manufacturers (Imecs Corporation with wireless LiFePO
4 Battery Technology, Mag Instruments and LED Lenser) have products which utilise these batteries.
RC model cars may use these batteries, especially as RX and TX packs as a direct replacement of NiMh packs or LiPo packs without need for voltage regulator, as they provide 6.6 V nominal voltage over 7.4 V of LiPo packs, which is little higher and may require to be regulated down to 6.0 V.
Celestron has come out with a lightweight "PowerTank Lithium" battery that uses this chemistry to power their telescope drives. It weighs only 2.25 pounds (1.02 kg) and produces 84.6 W?h and 12 V DC. Additionally, the internal battery in some of their telescope mounts uses this chemistry.
See also
References
Source of the article : Wikipedia